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Introduction
This thesis is an exploration of chromatic polynomials, orbital
chromatic polynomials and attempting to prove the following
conjecture,

Conjecture 1 (?) For N > 0, there exists a graph Γ and an automorphism
group G of Γ for which OPΓ,G(x) has a root at least N larger than the largest
real root of PΓ(x).

Graph Theory Basics
To understand the topic of my research let us consider some
definitions from graph theory,

Definition 2 A graph, Γ = (V, E), is a set V, of vertices and a set of edges
where each edge is a 2 element subset of V.

Definition 3 A proper k-coloring of a graph Γ, is a function,
c : V → {1, ..., k} such that c(u) 6= c(v) for any edge {u, v}.

(a) A graph Γ (b) A proper coloring of
Γ

Figure 1: A graph and a proper coloring of the graph

Chromatic Polynomial
Definition 4 (?) The chromatic polynomial, PΓ(k) of a graph Γ and a positive
integer k is the number of proper k-colorings of a graph.

Example: We shall now compute the chromatic polynomial for the
graph Γ in Figure 1. Let us begin by noting that the vertices A, B and C
are all adjacent to one another, so there is x(x− 1)(x− 2) ways to
color these vertices. Now note that vertices D, E and F are only
adjacent to one vertex each so there are x− 1 possible colors for each
of these vertices. We then find the chromatic polynomial of the graph
Γ in Figure 1 is, PΓ(x) = x(x− 1)4(x− 2).

Orbital Chromatic Polynomials
Definition 5 (?) For a graph Γ, a group G of automorphisms of Γ, and a
positive integer k, the orbital chromatic polynomial OPΓ,G(k), is the number
of unique k-colorings of Γ. Where two colorings are equivalent if one can be
obtained from another by an automorphism in G.

A closed form for OPΓ,G(x) can also be written as,

Theorem 6 The orbital chromatic polynomial of a graph Γ with respect to a
group G is,

OPΓ,G(x) = 1
|G|∑g∈G PΓ/g(x).

Let us now find OPΓ,G(x) for some Γ and G,
Example: Let us compute the orbital chromatic polynomial, OPΓ,G(x),
of a path graph Γ on three vertices and the group G = {0◦, 180◦},
where the group elements are rotations of the graph. From Theorem 6
we know how to compute OPΓ,G(x) from the chromatic polynomials
of Γ/0◦ and Γ/180◦. These two graphs are shown in Figure 2.

Orbital Chromatic Polynomials Cont.

(a) Γ/0◦ (b) Γ/180◦

Figure 2: A graph Γ and Γ/180◦

We find the chromatic polynomial of Γ/0◦ is PΓ/0◦(x) = x(x− 1)2 and
the chromatic polynomail of Γ/180◦ to be PΓ/180◦(x) = x(x− 1). So we
find the orbital chromatic polynomial of the graph Γ and group G to
be, OPΓ,G(x) = 1

2(x(x− 1)2 + x(x− 1)).

Results

I have written the following theorem which describes the
characteristics of graphs whose existence would prove Conjecture 1.

Theorem 7 Let Γ be a graph and G be a group of automorphisms. Suppose
the following hold:

1. The largest real root of PΓ(x) is m.

2. There is some g ∈ G for which Γ/g has less vertices than any of the graphs
{Γ/h : h ∈ G, h 6= g}.

3. For the g in (2) Γ/g is a complete graph on j vertices where m < j.

4. There exists some x0 > m such that PΓ/g(x0) < 0.

Then one can construct from Γ and G, a graph Γ′ and a group of
automorphims of Γ′, called G’, such that the OPΓ′,G′(x) has a real root that is
at least j - 1-m larger than the largest real root of PΓ(x).

In Figure 3 we see an example of a graph Γ, a cycle graph on 6
vertices, and a group G = {0◦, 180◦} of automorphims of Γ that have
the characteristics described in Theorem 7.

(a) A graph Γ (b) Γ/180◦

Figure 3: A graph with characteristics described in Theorem 7
The largest root of PΓ(x) is 1 and Γ/180◦ is a complete graph on 3
vertices. By Theorem 7 we know the orbital chromatic polynomial will
have a root that is 1 larger than the largest real chromatic root of PΓ(x).
The goal now is to find a family of graphs which have the
characteristic described above, in order to prove Conjecture 1.
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